—
title: Minimax Algorithm
date: 2020-08-14 20:03:12
tags:
categories: Algorithm
—
https://segmentfault.com/a/1190000013527949
const maxDepth = 4;
let counter = 1;
const dataTree = [
[
[
[3, 17], [2, 12]
],
[
[15], [25, 0]
]
],
[
[
[2, 5], [3]
]
[
[2, 14]
]
]
];
constructor(data, type, depth) {
this.data = data;
this.type = type; // 区分此节点的种类是max或min
this.depth = depth;
}
function changeType(type) {
return type === ‘max’ ? ‘min’ : ‘max’;
}
score() {
// 到达了最大深度后,此时的data是数组最内层的数字
if (this.depth >= 4) {
return this.data;
}
// 对于max节点,返回的是子节点中的最大值
if (this.type === 'max') {
let maxScore = -1000;
for (let i=0; i < this.data.length; i++) {
const d = this.data[i];
// 生成新的节点,子节点的type会和父节点不同
const childNode = new Node(d, changeType(this.type), this.depth+1);
// 递归获取其分数
const childScore = childNode.score();
if (childScore > maxScore) {
maxScore = childScore;
}
}
return maxScore;
}
// 对于min节点,返回的是子节点中的最小值
if (this.type === 'min') {
let minScore = 1000;
for (let i=0; i < this.data.length; i++) {
const d = this.data[i];
// 生成新的节点,子节点的type会和父节点不同
const childNode = new Node(d, changeType(this.type), this.depth+1);
// 递归获取其分数
const childScore = childNode.score();
if (childScore > minScore) {
minScore = childScore;
}
}
return minScore;
}
}
const testNode = new Node(dataTree, ‘max’, 0);
console.log(testNode.score());
Alpha-beta 剪枝算法的实现
是minimax的改进
class Node{
constructor(data, type, depth) {
this.data = data;
this.type = type; // 区分此节点的种类是max或min
this.depth = depth;
this.alpha = alpha || -Infinity;
this.beta = beta || Infinity;
}
score() {
}
}